29,047 research outputs found

    Entropy of the Schwarzschild-de Sitter Black Hole due to arbitrary spin fields in different Coordinates

    Full text link
    By using the Newman-Penrose formalism and the improved thin-layer ``brick wall'' approach, the statistical-mechanical entropies of the Schwarzschild-de Sitter black hole arising from quantum massless arbitrary spin fields are studied in the Painlev\'e and Lemaitre coordinates. Although the metrics in both the Painlev\'e and the Lemaitre coordinates do not obviously possess the singularities as that in the Schwarzschild-like coordinate, we find that, for arbitrary spin fields, the entropies in the Painlev\'e and Lemaitre coordinates are exactly equivalent to that in the Schwarzschild-like coordinate.Comment: 14 pages, no figure, to be published in JHE

    Chiral tunneling in trilayer graphene

    Full text link
    We study the effect of chiral-tunneling in Bernal and Rombhohedral stacked trilayer-graphene (3LG). Based on the chirality of the electronic bands, at the K-point, (Rombhohedral) Bernal-3LG exhibits 100% (50%) transparency across a heterojunction. Utilizing this property, we further investigate the effect of electron collimation in 3LG. Due to the difference in the Berry's phase, we show that, Rombhohedral-3LG is a better electron collimator, compared to monolayer and Bernal-bilayer graphene. Since, Bernal-3LG can be decomposed into two separate channels consisting of a monolayer and a modified Bernal-bilayer graphene; the Bernal-3LG is weaker electron collimator, compared to Rombhohedral-3LG.Comment: APL, 2012; http://dx.doi.org/10.1063/1.370375

    Continuous-variable multipartite unlockable bound entangled Gaussian states

    Full text link
    Continuous-variable (CV) multipartite unlockable bound-entangled states is investigated in this paper. Comparing with the qubit multipartite unlockable bound-entangled states, CV multipartite unlockable bound-entangled states present the new and different properties. CV multipartite unlockable bound-entangled states may serve as a useful quantum resource for new multiparty communication schemes. The experimental protocol for generating CV unlockable bound-entangled states is proposed with a setup that is at present accessible.Comment: 6 pages, 4 figure

    Eigenstates of Paraparticle Creation Operators

    Get PDF
    Eigenstates of the parabose and parafermi creation operators are constructed. In the Dirac contour representation, the parabose eigenstates correspond to the dual vectors of the parabose coherent states. In order p=2p=2, conserved-charge parabose creation operator eigenstates are also constructed. The contour forms of the associated resolutions of unity are obtained.Comment: 14 pages, LaTex file, no macros, no figure

    Strong gravitational lensing by a rotating non-Kerr compact object

    Full text link
    We study the strong gravitational lensing in the background of a rotating non-Kerr compact object with a deformed parameter ϵ\epsilon and an unbound rotation parameter aa. We find that the photon sphere radius and the deflection angle depend sharply on the parameters ϵ\epsilon and aa. For the case in which the black hole is more prolate than a Kerr black hole, the photon sphere exists only in the regime ϵϵmax\epsilon\leq\epsilon_{max} for prograde photon. The upper limit ϵmax\epsilon_{max} is a function of the rotation parameter aa. As ϵ>ϵmax\epsilon>\epsilon_{max}, the deflection angle of the light ray closing very to the naked singularity is a positive finite value, which is different from those in both the usual Kerr black hole spacetime and in the rotating naked singularity described by Janis-Newman-Winicour metric. For the oblate black hole and the retrograde photon, there does not exist such a threshold value. Modelling the supermassive central object of the Galaxy as a rotating non-Kerr compact object, we estimated the numerical values of the coefficients and observables for gravitational lensing in the strong field limit.Comment: 16 pages, 10 figures. The corrected version to be appeared in Phys. Rev.

    Graphical description of local Gaussian operations for continuous-variable weighted graph states

    Full text link
    The form of a local Clifford (LC, also called local Gaussian (LG)) operation for the continuous-variable (CV) weighted graph states is presented in this paper, which is the counterpart of the LC operation of local complementation for qubit graph states. The novel property of the CV weighted graph states is shown, which can be expressed by the stabilizer formalism. It is distinctively different from the qubit weighted graph states, which can not be expressed by the stabilizer formalism. The corresponding graph rule, stated in purely graph theoretical terms, is described, which completely characterizes the evolution of CV weighted graph states under this LC operation. This LC operation may be applied repeatedly on a CV weighted graph state, which can generate the infinite LC equivalent graph states of this graph state. This work is an important step to characterize the LC equivalence class of CV weighted graph states.Comment: 5 pages, 6 figure

    Quantum entropy of the Kerr black hole arising from gravitational perturbation

    Get PDF
    The quantum entropy of the Kerr black hole arising from gravitational perturbation is investigated by using Null tetrad and \'t Hooft\'s brick-wall model. It is shown that effect of the graviton\'s spins on the subleading correction is dependent of the square of the spins and the angular momentum per unit mass of the black hole, and contribution of the logarithmic term to the entropy will be positive, zero, and negative for different value of a/r+a/r_+.Comment: 8 pages, 1 figure, Latex. to appear in Phys. Rev.
    corecore